各類考試中,工程問(wèn)題的考察越來(lái)越有規(guī)律可尋,有些題目甚至可以說(shuō)是有固定解題思路的,但是仍然有很多考生一看到工程問(wèn)題就產(chǎn)生畏難情緒,選擇了放棄,這是不可取的。接下來(lái)紅師教育將介紹關(guān)于工程問(wèn)題的常見(jiàn)解題思路,希望幫助各位考生在考試中能夠自信且準(zhǔn)確的求解出答案。
一、概念解讀
工程問(wèn)題是數(shù)學(xué)運(yùn)算中的??碱}型,主要考查工作總量、工作效率、工作時(shí)間這三個(gè)量之間的關(guān)系。他們?nèi)咧g什么關(guān)系呢,大家應(yīng)該都知道:工作總量=工作效率×工作時(shí)間,我們還要知道:工作時(shí)間=工作總量÷工作效率,工作效率=工作總量÷工作時(shí)間。
二、解題思路
工程問(wèn)題主要包括普通工程和多者合作兩個(gè)常見(jiàn)考點(diǎn),對(duì)于普通工程問(wèn)題,常利用基本公式結(jié)合方程法求解;對(duì)于多者合作,通俗點(diǎn)講就是好幾個(gè)人一起做一項(xiàng)工程,既然是好幾個(gè)人一起,那么合作的效率就等于各個(gè)效率的加和。除此之外解多者合作問(wèn)題需重點(diǎn)把握兩個(gè)關(guān)鍵:
1.多者合作一般根據(jù)不同工作方式下工作總量相等來(lái)構(gòu)建等量關(guān)系
2.經(jīng)常可以通過(guò)設(shè)工作總量或者工作效率為特值來(lái)解決
到底怎么設(shè)特值,我們通過(guò)后面的題目詳細(xì)說(shuō)明
【例題1】 一項(xiàng)工程,甲單獨(dú)做要10天,乙單獨(dú)做要15天。若甲乙兩人合作,需要多少天?
A.5 B.6 C.7 D.8
【答案】B
【解析】題目所求為合作的天數(shù),須知工作總量和甲乙的效率,均未知,怎么辦呢?可以把這項(xiàng)工程看成一份,設(shè)工作總量為1,所求為
發(fā)現(xiàn)出現(xiàn)分?jǐn)?shù)的相加要通分不好算,為什么會(huì)出現(xiàn)分?jǐn)?shù)呢?是不是我們把工作總量看成“1”份導(dǎo)致的,如果我們?cè)O(shè)的工作總量能被10、15整除就不會(huì)出現(xiàn)分?jǐn)?shù),但是設(shè)為誰(shuí)好呢?很顯然可以將工作總量設(shè)為10、15的最小公倍數(shù)30來(lái)求解,則所求為
答案為B。
【例題2】 完成一項(xiàng)工程,甲、乙的工作效率比為3∶4。這項(xiàng)工程,甲單獨(dú)做,7天完成。問(wèn)兩人合作多少天完成?
A.2 B.3 C.4 D.5
【答案】B
【解析】題目所求為合作天數(shù),須知工程總量和甲乙的效率,均未知。分析題目給出了甲乙的效率之比為3:4,即甲的效率看成3份,乙的效率看成4份,如果假設(shè)每一份為x。所以甲的效率為3x,則乙的效率為4x,再結(jié)合給出的時(shí)間可以表示出工作總量,故所求為
答案為B。
通過(guò)以上兩道題我們可以總結(jié)這一類工程問(wèn)題的常見(jiàn)解題思路:
1. 已知多個(gè)主體完工時(shí)間,可以設(shè)工作總量為1或多個(gè)完工時(shí)間的公倍數(shù),一般設(shè)公倍數(shù)計(jì)算會(huì)更簡(jiǎn)單一下,而設(shè)公倍數(shù)的時(shí)候?yàn)榱朔奖阌?jì)算一般設(shè)為最小公倍數(shù)。
2. 已知多個(gè)主體效率關(guān)系時(shí),一般將效率設(shè)為效率比的最簡(jiǎn)份數(shù)
更多相關(guān)考試信息請(qǐng)點(diǎn)擊查看:軍隊(duì)人才網(wǎng),了解軍隊(duì)文職報(bào)考條件、軍隊(duì)文職考試資料、軍隊(duì)文職成績(jī)查詢等內(nèi)容,為做好文職備考做準(zhǔn)備。
相關(guān)鏈接:
2、2023年軍隊(duì)文職人員公開(kāi)招考報(bào)考指南